Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 55(7): 1149-1163, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37386251

RESUMEN

Hereditary congenital facial paresis type 1 (HCFP1) is an autosomal dominant disorder of absent or limited facial movement that maps to chromosome 3q21-q22 and is hypothesized to result from facial branchial motor neuron (FBMN) maldevelopment. In the present study, we report that HCFP1 results from heterozygous duplications within a neuron-specific GATA2 regulatory region that includes two enhancers and one silencer, and from noncoding single-nucleotide variants (SNVs) within the silencer. Some SNVs impair binding of NR2F1 to the silencer in vitro and in vivo and attenuate in vivo enhancer reporter expression in FBMNs. Gata2 and its effector Gata3 are essential for inner-ear efferent neuron (IEE) but not FBMN development. A humanized HCFP1 mouse model extends Gata2 expression, favors the formation of IEEs over FBMNs and is rescued by conditional loss of Gata3. These findings highlight the importance of temporal gene regulation in development and of noncoding variation in rare mendelian disease.


Asunto(s)
Parálisis Facial , Animales , Ratones , Parálisis Facial/genética , Parálisis Facial/congénito , Parálisis Facial/metabolismo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Neuronas Motoras/metabolismo , Neurogénesis , Neuronas Eferentes
2.
medRxiv ; 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38234731

RESUMEN

Unsolved Mendelian cases often lack obvious pathogenic coding variants, suggesting potential non-coding etiologies. Here, we present a single cell multi-omic framework integrating embryonic mouse chromatin accessibility, histone modification, and gene expression assays to discover cranial motor neuron (cMN) cis-regulatory elements and subsequently nominate candidate non-coding variants in the congenital cranial dysinnervation disorders (CCDDs), a set of Mendelian disorders altering cMN development. We generated single cell epigenomic profiles for ~86,000 cMNs and related cell types, identifying ~250,000 accessible regulatory elements with cognate gene predictions for ~145,000 putative enhancers. Seventy-five percent of elements (44 of 59) validated in an in vivo transgenic reporter assay, demonstrating that single cell accessibility is a strong predictor of enhancer activity. Applying our cMN atlas to 899 whole genome sequences from 270 genetically unsolved CCDD pedigrees, we achieved significant reduction in our variant search space and nominated candidate variants predicted to regulate known CCDD disease genes MAFB, PHOX2A, CHN1, and EBF3 - as well as new candidates in recurrently mutated enhancers through peak- and gene-centric allelic aggregation. This work provides novel non-coding variant discoveries of relevance to CCDDs and a generalizable framework for nominating non-coding variants of potentially high functional impact in other Mendelian disorders.

3.
Cell Rep ; 29(2): 437-452.e4, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31597102

RESUMEN

The somatotopic motor-neuron projections onto their cognate target muscles are essential for coordinated movement, but how that occurs for facial motor circuits, which have critical roles in respiratory and interactive behaviors, is poorly understood. We report extensive molecular heterogeneity in developing facial motor neurons in the mouse and identify markers of subnuclei and the motor pools innervating specific facial muscles. Facial subnuclei differentiate during migration to the ventral hindbrain, where neurons with progressively later birth dates-and evolutionarily more recent functions-settle in more-lateral positions. One subpopulation marker, ETV1, determines both positional and target muscle identity for neurons of the dorsolateral (DL) subnucleus. In Etv1 mutants, many markers of DL differentiation are lost, and individual motor pools project indifferently to their own and neighboring muscle targets. The resulting aberrant activation patterns are reminiscent of the facial synkinesis observed in humans after facial nerve injury.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Músculos Faciales/embriología , Músculos Faciales/inervación , Neuronas Motoras/fisiología , Factores de Transcripción/metabolismo , Animales , Movimiento Celular , Femenino , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones Mutantes , Mutación/genética , Proteínas Represoras/metabolismo , Transcripción Genética
4.
Invest Ophthalmol Vis Sci ; 59(12): 5201-5209, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30372748

RESUMEN

Purpose: Proper control of eye movements is critical to vision, but relatively little is known about the molecular mechanisms that regulate development and axon guidance in the ocular motor system or cause the abnormal innervation patterns (oculomotor synkinesis) seen in developmental disorders and after oculomotor nerve palsy. We developed an ex vivo slice assay that allows for live imaging and molecular manipulation of the growing oculomotor nerve, which we used to identify axon guidance cues that affect the oculomotor nerve. Methods: Ex vivo slices were generated from E10.5 IslMN-GFP embryos and grown for 24 to 72 hours. To assess for CXCR4 function, the specific inhibitor AMD3100 was added to the culture media. Cxcr4cko/cko:Isl-Cre:ISLMN-GFP and Cxcl12KO/KO:ISLMN-GFP embryos were cleared and imaged on a confocal microscope. Results: When AMD3100 was added to the slice cultures, oculomotor axons grew dorsally (away from the eye) rather than ventrally (toward the eye). Axons that had already exited the midbrain continued toward the eye. Loss of Cxcr4 or Cxcl12 in vivo caused misrouting of the oculomotor nerve dorsally and motor axons from the trigeminal motor nerve, which normally innervate the muscles of mastication, aberrantly innervated extraocular muscles in the orbit. This represents the first mouse model of trigeminal-oculomotor synkinesis. Conclusions: CXCR4/CXCL12 signaling is critical for the initial pathfinding decisions of oculomotor axons and their proper exit from the midbrain. Failure of the oculomotor nerve to innervate its extraocular muscle targets leads to aberrant innervation by other motor neurons, indicating that muscles lacking innervation may secrete cues that attract motor axons.


Asunto(s)
Quimiocina CXCL12/fisiología , Enfermedades del Nervio Oculomotor/fisiopatología , Nervio Oculomotor/anomalías , Receptores CXCR4/fisiología , Transducción de Señal/fisiología , Sincinesia/fisiopatología , Núcleo Motor del Nervio Trigémino/fisiopatología , Animales , Fármacos Anti-VIH/farmacología , Axones/patología , Bencilaminas , Ciclamas , Proteínas Fluorescentes Verdes/metabolismo , Compuestos Heterocíclicos/farmacología , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Músculos Oculomotores/inervación , Nervio Oculomotor/efectos de los fármacos , Técnicas de Cultivo de Órganos
5.
J Clin Invest ; 127(5): 1664-1682, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28346224

RESUMEN

Duane retraction syndrome (DRS) is the most common form of congenital paralytic strabismus in humans and can result from α2-chimaerin (CHN1) missense mutations. We report a knockin α2-chimaerin mouse (Chn1KI/KI) that models DRS. Whole embryo imaging of Chn1KI/KI mice revealed stalled abducens nerve growth and selective trochlear and first cervical spinal nerve guidance abnormalities. Stalled abducens nerve bundles did not reach the orbit, resulting in secondary aberrant misinnervation of the lateral rectus muscle by the oculomotor nerve. By contrast, Chn1KO/KO mice did not have DRS, and embryos displayed abducens nerve wandering distinct from the Chn1KI/KI phenotype. Murine embryos lacking EPH receptor A4 (Epha4KO/KO), which is upstream of α2-chimaerin in corticospinal neurons, exhibited similar abducens wandering that paralleled previously reported gait alterations in Chn1KO/KO and Epha4KO/KO adult mice. Findings from Chn1KI/KI Epha4KO/KO mice demonstrated that mutant α2-chimaerin and EphA4 have different genetic interactions in distinct motor neuron pools: abducens neurons use bidirectional ephrin signaling via mutant α2-chimaerin to direct growth, while cervical spinal neurons use only ephrin forward signaling, and trochlear neurons do not use ephrin signaling. These findings reveal a role for ephrin bidirectional signaling upstream of mutant α2-chimaerin in DRS, which may contribute to the selective vulnerability of abducens motor neurons in this disorder.


Asunto(s)
Quimerina 1/metabolismo , Síndrome de Retracción de Duane/metabolismo , Embrión de Mamíferos/metabolismo , Neuronas Motoras/metabolismo , Receptor EphA4/metabolismo , Transducción de Señal , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Quimerina 1/genética , Síndrome de Retracción de Duane/genética , Humanos , Ratones , Ratones Noqueados , Neuronas Motoras/patología , Receptor EphA4/genética , Médula Espinal/metabolismo , Médula Espinal/patología
6.
Science ; 332(6028): 484-8, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21454754

RESUMEN

Heparan and chondroitin sulfate proteoglycans (HSPGs and CSPGs, respectively) regulate numerous cell surface signaling events, with typically opposite effects on cell function. CSPGs inhibit nerve regeneration through receptor protein tyrosine phosphatase sigma (RPTPσ). Here we report that RPTPσ acts bimodally in sensory neuron extension, mediating CSPG inhibition and HSPG growth promotion. Crystallographic analyses of a shared HSPG-CSPG binding site reveal a conformational plasticity that can accommodate diverse glycosaminoglycans with comparable affinities. Heparan sulfate and analogs induced RPTPσ ectodomain oligomerization in solution, which was inhibited by chondroitin sulfate. RPTPσ and HSPGs colocalize in puncta on sensory neurons in culture, whereas CSPGs occupy the extracellular matrix. These results lead to a model where proteoglycans can exert opposing effects on neuronal extension by competing to control the oligomerization of a common receptor.


Asunto(s)
Axones/fisiología , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/química , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Células Receptoras Sensoriales/fisiología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Membrana Celular/metabolismo , Células Cultivadas , Proteoglicanos Tipo Condroitín Sulfato/química , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Cristalografía por Rayos X , Matriz Extracelular , Ganglios Espinales , Glipicanos/metabolismo , Conos de Crecimiento/metabolismo , Proteoglicanos de Heparán Sulfato/química , Heparitina Sulfato/análogos & derivados , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Humanos , Ratones , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Neuritas/fisiología , Neurocano/metabolismo , Conformación Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína
7.
Science ; 326(5952): 592-6, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19833921

RESUMEN

Chondroitin sulfate proteoglycans (CSPGs) present a barrier to axon regeneration. However, no specific receptor for the inhibitory effect of CSPGs has been identified. We showed that a transmembrane protein tyrosine phosphatase, PTPsigma, binds with high affinity to neural CSPGs. Binding involves the chondroitin sulfate chains and a specific site on the first immunoglobulin-like domain of PTPsigma. In culture, PTPsigma(-/-) neurons show reduced inhibition by CSPG. A PTPsigma fusion protein probe can detect cognate ligands that are up-regulated specifically at neural lesion sites. After spinal cord injury, PTPsigma gene disruption enhanced the ability of axons to penetrate regions containing CSPG. These results indicate that PTPsigma can act as a receptor for CSPGs and may provide new therapeutic approaches to neural regeneration.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Regeneración Nerviosa , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Proteoglicanos/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Agrecanos/metabolismo , Animales , Astrocitos/metabolismo , Axones/fisiología , Sitios de Unión , Células Cultivadas , Proteoglicanos Tipo Condroitín Sulfato/química , Sulfatos de Condroitina/metabolismo , Femenino , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Ligandos , Ratones , Proteínas del Tejido Nervioso/química , Neuritas/fisiología , Neurocano , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteoglicanos/química , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/química , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología
8.
Neuron ; 49(4): 517-31, 2006 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-16476662

RESUMEN

The formation and plasticity of synaptic connections rely on regulatory interactions between pre- and postsynaptic cells. We show that the Drosophila heparan sulfate proteoglycans (HSPGs) Syndecan (Sdc) and Dallylike (Dlp) are synaptic proteins necessary to control distinct aspects of synaptic biology. Sdc promotes the growth of presynaptic terminals, whereas Dlp regulates active zone form and function. Both Sdc and Dlp bind at high affinity to the protein tyrosine phosphatase LAR, a conserved receptor that controls both NMJ growth and active zone morphogenesis. These data and double mutant assays showing a requirement of LAR for actions of both HSPGs lead to a model in which presynaptic LAR is under complex control, with Sdc promoting and Dlp inhibiting LAR in order to control synapse morphogenesis and function.


Asunto(s)
Proteínas de Drosophila/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/fisiología , Neuronas/citología , Proteínas Tirosina Fosfatasas/fisiología , Proteoglicanos/metabolismo , Receptores de Superficie Celular/fisiología , Sinapsis/fisiología , Animales , Western Blotting/métodos , Células Cultivadas , Propuestas de Licitación/métodos , Proteínas de Unión al ADN/metabolismo , Drosophila , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Conos de Crecimiento/metabolismo , Peroxidasa de Rábano Silvestre/metabolismo , Inmunohistoquímica/métodos , Larva/citología , Microscopía Electrónica de Transmisión/métodos , Modelos Biológicos , Morfogénesis , Unión Neuromuscular/metabolismo , Unión Neuromuscular/ultraestructura , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , ARN Bicatenario/farmacología , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores , Sinapsis/ultraestructura , Transmisión Sináptica/fisiología , Sindecanos , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...